Introducing Typelevel Scala
Into an OO Environment

Marcus Henry, Jr.

@dreadedsoftware

You don’t need a Degree to define flatMap

e Understanding Category Theory is not a prerequisite for coding!
e Using the libraries is much simpler than understanding them
e C++ devs take operators more easily than Java devs

Immutability as Default

* Don’t mutate state outside of initializing Function
e All Function Inputs are Immutable
* All Function Outputs are Immutable
 Vars and collection.mutable are local and temporary
* Function returns are placed into a val

def color(str: String): String = {
str match{

case "One Fish" => "Red Fish"

case "Two Fish" => "Blue Fish"

def bad(): mutable.Buffer[String] = | def good(): List{String] = |

val fish = mutable.Buffer([String] () val fish = mutable.Buffer([String] ()
var one = "One Fish" val one = "One Fish"
var two = "Two Fish" val two = "Two Fish"
fish.append{one) fish.append(one)
fish.append (two) fish.append (two)
one = color (one) fish.append(color (one))
two = color (two) fish.append(color(two))
fish.append (one) fish.toList
fish.append (two) }
fish
}
def better(): List[String] = {
wval one = "One Fish"
def worse (fish: mutable Buffer(String)): Unit = |{ _ .
A o N wval two = "Two Fish"
var twoe = "Two Fish"™
fish.append (one) List (
fish.append (two) one,
one = color (one) two,

two = color (two) color (one)
r

fish.append (on=) color (tWO}
fish.append (two)|

Combinators Are Awesome

* Functions produce new state; they don’t destroy old state

* Methods on Structures are Functions
* Mutable members harm potential sister threads
 Mutable members confuse data flow (think JSON on the wire)

 Combinators decouple usage from data definition
* Helps replace Loops, Null, Throw
* Handle Bad State at the call site not up the call stack

class BadFish(
private var m name: String,
private var m color: String
) 4
def this() = this(null, null)

def getName(): String = m name
def getColor(): String = m name
def setName (name: String) {
m_name = name
}
def setColor(color: String) {
m color = color
by class Fish(val fishName: String) {
val fishColor: String = color (fishName)
def isValid(): Boolean = try{ def spawnFish(f: String => String): Fish = {
check () new Fish(f (fishName))
true }
tcatch{
case : IllegalArgumentException => false I

def check(): Unit = {
check (m name, m color)
}
def check(newName: String, newColor: String) {
if(!color (newName) .equals (newColor))
throw new IllegalArgumentException (
"Fish color and name do not match"

Case Classes & Traits

e Automatic encapsulation
* Immutable by Default

* Data control flow can be fully defined
* Multiple success Case Classes
* Single Failure Case Class
* No need for null or throw on bad input

sealed trait Fish{ object NotFish extends Fish{
val name: String override final val name: String = "Ahab"
val color: String override final val color: String = "White Whale"

} }

case object OneFish extends Fish{
override final val name: String = "One Fish"
override final val color: String = "Red Fish"

}

case object TwoFish extends Fish{

override final val name: String = "Two Fish"
override final val color: String = "Blue Fish"
}
sealed trait One{self: Fish => sealed trait One extends Fish{
override final val name: String = "One Fish" override final val name: String = "One Fish"
} }
sealed trait Two{self: Fish => sealed trait Two extends Fish{
override final val name: String = "Two Fish" override final val name: String = "Two Fish"
} }
sealed trait Red{self: Fish => sealed trait Red extends Fish{
override final val color: String = "Red Fish" override final val color: String = "Red Fish"
} }
sealed trait Blue{self: Fish => sealed trait Blue extends Fish{
override final val color: String = "Blue Fish" override [final val color: String = "Blue Fish"
} }
object OneFish extends Fish with One with Red object OneFish extends Fish with One with Red

object TwoFish extends Fish with Two with Blue object TwoFish extends Fish with Two with Blue

Objects are not Coroutines

 Typically Java breaks all three of the previous ideas

* The usual pattern goes something like
* |nitialize
e Perform some operation

Mutate

Perform Operation

Mutate

Etc...

* The Habit needs to be

* Define
* Apply Combinator

import scala.collection.mutable def asCoroutine(): Unit = {

class BadSchool () { val coroutine = new BadSchool ()
private var name: String = null val (name, depth, location, fish) = somelInit/()
private var depth: Depth = null coroutine.setName (name)
private var location: Location = null coroutine.setDepth (depth)
private var fish: mutable.Buffer[Fish] = null coroutine.setLocation (location)
coroutine.setFish (fish)
def setName (newName: String): Unit = { convertTodsonAndPutOnTheWire (coroutine)
name = newName
} var newFish: Fish = null
def getName(): String = name for(i <- (0 to 10)){
newFish = nextFish (coroutine)
def setDepth (newDepth: Depth): Unit = { coroutine.addFish (newFish)
depth = newDepth convertTodsonAndPutOnTheWire (coroutine)
} }
def getDepth(): Depth = depth }
type InitType = (String, Depth, Location, mutable.Buffer[Fish])
def setLocation (newLocation: Location): Unit = { def someInit(): InitType|= {
location = newLocation ("blah", Deep, North, mutable.Buffer (OneFish))
} }
def getLocation(): Location = location def convertTodsonAndPutOnTheWire (school: BadSchool): Unit = {
println (school)
def setFish (newFish: mutable.Buffer[Fish]): Unit = { }
fish = newFish def nextFish(school: BadSchool): Fish = {
} def fish(one: Float): Fish = {
def removeFish (aFish: Fish): Unit = { if (one < scala.util.Random.nextFloat ()) {
fish —= aFish OneFish
} }else TwoFish
def addFish(aFish: Fish): Unit = { }
fish += aFish school.getFish () .last match{
} case OneFish => fish(. %)
def getFish(): mutable.Buffer[Fish] = fish case TwoFish => fish(.7%)
case _ => fish(.5f)
override def toString(): String= { }

s"School (\n\t$name, \n\t$depth, \n\t$location, \n\tS$£fish)" }
}

import scala.collection.immutable
case class School (
name: String,
depth: Depth,
location: Location,
fish: immutable.Queue[Fish])
def aBetterWay(): Unit = {
@annotation.tailrec
def perform(gty: Int, acc: List[School]): List[School] = {
if(gqty > && acc.nonEmpty) {
val head :: tail = acc
val currentFish = head.fish.last
val next = nextFish(currentFish)
val result = head.copy(fish = head.fish.enqueue (next))
perform(qty - |, result :: acc)
}else acc

)

val school = School (
"Bikini Bottom",
Deep,
South,
imutable . Queue (OneFish))
val result = perform(!', List(school))
result. foreach (convertTodsonAndPutOnTheWire)
}

def nextFish(current: Fish): Fish = {
def fish(one: Float): Fish = {
if (one < scala.util.Random.nextFloat()) {
OneFish
}else TwoFish
}
current match({
case OneFish => fish(. 1)
case TwoFish => fish(. 1)
case _ => fish(.51)
}

}
def convertTodsonAndPutOnTheWire (school: School): Unit = {

println(school)
}

Monocle & Argonaut

* Makes it easy to produce & traverse compositions of Case Classes

* Every product of sufficient user base has a persistent settings store
 Complicated “readLine” based settings become one-liners
* JSON settings are web (Javascript) friendly

import scala.language.higherKinds
case class Color(r: Byte, g: Byte, b: Byte)

case class FishTank(liters: Int, color: Color, fish: List([Fish])

val (tankLiters, tankColor, tankFish) = {
val gen = GenLens|[FishTank]
(gen(_.liters), gen(_.color), gen(_.fish))
}
val (colorR, colorG, colorB) = |
val gen = GenLens[Color]
(gen(_.r}), gen(_.g), gen(_.b))
1
val (tankColorR, tankColorG, tankColorB) = (
tankColor.composeLens (colorR),
tankColor.composeLens (colorG),
tankColor.composelens (colorB)

)

implicit def codecTank: CodecJson[FishTank] =
casecodec3 (
FishTank.apply, FishTank.unapply
) ("litexrs”, "colox", "fish")
implicit def codecColor: Codecdson([Color] =
casecodec3 (
Color.apply, Color.unapply
poE, Fghe DN
implicit def codecFish: Codecdson[Fish] =
CodecJson (
(f: Fish) =>
("name” := f.name) ->:
("color" := f.color) ->:
jEmptyObject,
(c: HCursor) => for{
name <- (¢ —--\ "name").as[String]
color <= (¢ ==\ "color").as|[String)
Jyield{ (name, cclor) match(
case ("One Fish", "Red Fish") => OneFish
case ("Two Fish", "Blue Fish") => TwoFish
case _ => NotFish

1}

object settings{
private val settings: mutable.Map[String, FishTank] =
mutable.Map()

def apply(key: String): Option[FishTank] = settings.get (key)
def update(key: String, byte: Byte): Unit = {

settings(key) = settings.get (key) match{ object asyncSettings{
case Some (tank) => private sealed trait Message
tankColor.modify { _ => Color(byte, byte, byte)) (tank) private case class Get(key: String)
case None => extends Message
FishTank(, Color(byte, byte, byte), Nil) private case class SetGrey(key: String, hue: Byte)
] extends Message
1
def update(key: String, size: Int): Unit = |{ private.class PerfoFm extends Actor{
settings(key) = settings.get (key) match{ override val receive: Receive = step(Map())
case Some(tank) => def step(map: Map([String, FishTank]): Receive = {
tankLiters.modify(_=> size) (tank) case Get(key) => sender | map(key)
case => case SetGrey(key, value) =>
FishTank(size, Color(, ,), Nil) val newTank: FishTank = 222
} val newMap = map + (key —> newTank)
} context.become (step (newMap))
def update(key: String, fish:List([Fish]): Unit = { }
settings(key) = settings.get (key) match| override def preStart(): Unit = ?2727?//recall
case Some (tank) => override def postStop(): Unit = 22?27?//persist
tankFish.modify(_ => fish) (tank))
case _ =>
FishTank(!, Color(i,(,), fish) val actor: ActorRef = actorSystem.actorOf{
} Props (new Perform())

} }
def apply(key: String): Future[FishTank] =

def persist(): Unit = { (actor ? Get(key)).collect{
val jsonRaw = settings.tolist.asJson case Some(t: FishTank) => t
val json = jsonRaw.nospaces }
putOnWire (j=on) def update(key: String, hue: Byte) =
writeToDisk (json) actor ! SetGrey(key, hue)

} }
def recall(): Unit = (
val str = getFromDisk()
val opt = g;g.decodeOption[List[(String, FishTank)]]
opt.foreach{1ist =>
settings ++= [list.toMep
}

Type Classes

* Type Classes decouple functionality from data
* Far more powerful than subclassing

* Application components can expose simple Case Classes and leave
usage rules open

* Implicit arguments ensure dependencies exist at compile time

trait Adder[Typel]{
def add(other: Type): Type
}
trait Chainer([Arg, Type(Arg]]{
def chain[Res] (f: Arg => Type[Res]): Type[Res]
}

case class Team[Typel (members: List[Type])
extends Adder [Team[Type]]
with Chainer[Type, Team](
override def add(other: Team[Type]): Team|[Type] = {
Team (members +4 other.members)
}
override def chain([Res] (
f: Type => Team[Res]): Team[Res] = {
val list = members.flatMap(member => f (member) .members)
Team(list)
}
}

case class TeamStructured|[Type] (members: List[Type])
extends Adder[TeamStructured|[Type]]
with Chainer[Type, TeamStructured](
override def add(
other: TeamStructured[Type]): TeamStructured|[Type] = {
val (leadl, indil) = members.splitAt ()
val (lead2, indi2) = other.members.splitAt ()
TeamStructured (leadl ++ lead2 ++ indil ++ indi2)
}
override def chain[Res] (
f: Type => TeamStructured|[Res]): TeamStructured[Res] = {
val (leaders, individuals) = members.map{member =>
val mems = £ (member) .members
mems.splitAt ()
}.unzip
TeamStructured (
leaders.flatMap {[x=>x} ++
individuals.flatMap{x=>x})

trait Adder([Type(J]1{
def add[item] (

left: Type[Item], right: Type[Item]): Type(Item]

trait Chainer[Typel 11{
def chain[Item, Res](

arg: Type[Item], f: Item => Type[Res]): Type[Res]
}

case class Team[Type] (members: List[Typel)

object structured{

implicit def adder: Adder[Team] = new Adder[Team]{
override def add[Item] (

left: Team[Item], right: Team[Item]): Team[Item] = { object unstructured({
val (leadl, indil) = left.members.splitAt(”) implicit def adder: Adder([Team] = new Adder([Team] {
val (lead2, indi2) = right.members.splitAt() override def add[Item] (
Team(leadl ++ lead2 ++ indil ++ indi2) left: Team[Item], right: Team[Item]): Team[Item] = |
)} Team(left.members ++ right.members)
]|)
)
implicit def chainer: Chainer|Team] = new Chainer[Team] {
override def chain[Item, Res] (implicit def chainer: Chainer[Team] = new Chainer|[Team] {
arg: Team[Item], f: Item => Team[Res]): Team[Res] = { override def chain[Item, Res] (
val (leaders, individuals) = arg.members.map{member => arg: Team[Item], f: Item => Team[Res]): Team[Res] = {
val mems = f(member).members val list = arg.members.flatMap(
mems.splitAt () member => f (member) .members)
} .unzip Team(list)
Team (}

leaders.flatMap {x=>x} ++ }
individuals.flatMap({x=>x}) }

Cats

* Ilts not as complicated as it seems!!!
* Not Morphism; Function
* Not Monoid; Additive or Multiplicative

* Not Monad; Has map/flatMap
* think java8 Optional & Stream
* No real Cpp analog; possible with template<template ...>

* Coaching math is not important; coaching usage is

* Coupled Scala monad support is far less powerful than Type Class
Monads with Implicits

case class Team[Type] (members: List[Type])

object structured{
implicit def adder([Arg]: Monoid[Team[Arg]] =
new Monoid{[Team[Argl]{
override def empty: Team[Arg] = Team(Nil)
override def combine (

object unstructured{ left: Team{Arg), ri " . —
: ght: Team[Arg)): Team[Arg] = {
implicit def adder{Arg]: Monoid[Team[Axrgl] = val (leadl, indgl; = left.members.splitAt ()
new Mon?ld[Team[Arg]!(B . val (lead2, indi2) = right.members.splitAt ()
oyerride del ‘empty: Tesm{hrg) = Tesm(Nil) val newMembers = leadl ++ lead2 ++ indil ++ indi2
override def combine(Team (newMembers)
left: Team[Arg), right: Team[Arg]): Team[Arg] = | }
val newMembers = left.members ++ right.members }
Team (newMembers) implicit def chainer: Monad[Team] = new Monad[Team] (
; ! override def flatMap[Arg, Ret] (
: - ; team: Team[Argl) (f: Arg => Team[Ret]): Team[Ret] = {
implicit def chainer: Monad[Team] = new Monad[Team] { val (leaders, individuals) = team.members.map{member =>

override def flatMap[Arg, Ret] (
team: Team([Argl) (f: Arg => Team[Ret])): Team[Ret] = { mems , spLitALt (2)
val newMembers = team.members.flatMap(f(_) .members) } .unzip
Team (newMembers) Team (

} leaders.flatMap {(x=>x} ++
! individuals.flatMap{x=>x})

val mems = f (member) .members

In Conclusion

AN N N NN S

You don’t need a degree to define flatMap

Default to Immutability

Combinators over loops, null and throw

Case Classes for auto-encapsulation

Objects are not coroutines

Monocle & Argonaut for settings and JSON

Type Classes over Subclasses for functionality

Cats for Combinable Structures & Chainable Operations

