
Introducing Typelevel Scala 
into an OO Environment

Marcus Henry, Jr.

@dreadedsoftware



You don’t need a Degree to define flatMap

• Understanding Category Theory is not a prerequisite for coding!

• Using the libraries is much simpler than understanding them

• C++ devs take operators more easily than Java devs



Immutability as Default

• Don’t mutate state outside of initializing Function
• All Function Inputs are Immutable

• All Function Outputs are Immutable

• Vars and collection.mutable are local and temporary

• Function returns are placed into a val







Combinators Are Awesome

• Functions produce new state; they don’t destroy old state

• Methods on Structures are Functions
• Mutable members harm potential sister threads

• Mutable members confuse data flow (think JSON on the wire)

• Combinators decouple usage from data definition

• Helps replace Loops, Null, Throw

• Handle Bad State at the call site not up the call stack





Case Classes & Traits

• Automatic encapsulation

• Immutable by Default

• Data control flow can be fully defined
• Multiple success Case Classes

• Single Failure Case Class

• No need for null or throw on bad input





Objects are not Coroutines

• Typically Java breaks all three of the previous ideas

• The usual pattern goes something like 
• Initialize
• Perform some operation
• Mutate
• Perform Operation
• Mutate
• Etc…

• The Habit needs to be
• Define
• Apply Combinator







Monocle & Argonaut

• Makes it easy to produce & traverse compositions of Case Classes

• Every product of sufficient user base has a persistent settings store
• Complicated “readLine” based settings become one-liners

• JSON settings are web (Javascript) friendly







Type Classes

• Type Classes decouple functionality from data

• Far more powerful than subclassing

• Application components can expose simple Case Classes and leave 
usage rules open

• Implicit arguments ensure dependencies exist at compile time







Cats

• Its not as complicated as it seems!!!

• Not Morphism; Function

• Not Monoid; Additive or Multiplicative

• Not Monad; Has map/flatMap
• think java8 Optional & Stream

• No real Cpp analog; possible with template<template …>

• Coaching math is not important; coaching usage is

• Coupled Scala monad support is far less powerful than Type Class 
Monads with Implicits





In Conclusion

 You don’t need a degree to define flatMap
 Default to Immutability
 Combinators over loops, null and throw
 Case Classes for auto-encapsulation
 Objects are not coroutines
 Monocle & Argonaut for settings and JSON
 Type Classes over Subclasses for functionality
 Cats for Combinable Structures & Chainable Operations


