What the Hell is an "Effect Type"?

I was reading through the fs2 documentation and user guide and thought to myself, this is really straight forward! And, to their credit it is. Anyone who is used to FP and Scalaz or Haskell will take to the documentation with little friction. However, when an FP novice or someone from a language with less powerful FP implementations (F#, C#, Java) encounters this documentation, its a pain to trudge through. 

Through many attempts at explaining fs2, I have found the main topic of concern is the "effect type". On its surface, this term seems rather benign:

  1. Everyone knows FP strives to have no side effects
  2. We all know certain things (IO for example) are fundamentally effectful
  3. In order to encode these effects into FP style, we build abstractions
  4. These abstractions for effects are our effect types

So, taking the canonical example from the fs2 documentation

import fs2.{io, text, Task}
import java.nio.file.Paths

def fahrenheitToCelsius(f: Double): Double =
(f - 32.0) * (5.0/9.0)

val converter: Task[Unit] =
  io.file.readAll[Task](Paths.get("testdata/fahrenheit.txt"), 4096)
    .filter(s => !s.trim.isEmpty && !s.startsWith("//"))
    .map(line => fahrenheitToCelsius(line.toDouble).toString)

// at the end of the universe...
val u: Unit = converter.unsafeRun()

We see a file read, a parse, a transformation then a file write (reading and writing files are side effect heavy). The effect type is Task and the result is Unit. This can be read as

The converter exists to create a Task which reads a file as bytes, converts those bytes to utf-8 Strings, transform those Strings and write them back to disk in a separate file returning no result. The converter is purely effectful.

One can do this with a standard scala.collection.immutable.Stream as well.

val path = Paths.get("testdata/fahrenheit.txt")
val out = Paths.get("testdata/celsiusStream.txt")
val readerT =
  Try(Files.newBufferedReader(path, StandardCharsets.UTF_8))
val writerT =
  Try(Files.newBufferedWriter(out, StandardCharsets.UTF_8))
val result = for{
  reader <- readerT
  writer <- writerT
    .takeWhile(null != _)
    .filter(s => !s.trim.isEmpty && !s.startsWith("//"))
    .map(line => fahrenheitToCelsius(line.toDouble).toString)
    .flatMap{Stream(_, "\n")}

So, other than the obvious fs2 io convenience functions, to most FP unindoctrinated it seems the standard Stream version is about as useful and as safe as the fs2 Stream version. However, the fs2 Stream is much better FP practice.

Function Parameters should be Declared

Upon Stream creation, there is a big difference between fs2 and standard. With fs2, the creation mechanism is a pure function

io.file.readAll[Task](Paths.get("testdata/fahrenheit.txt"), 4096)

It takes all of its necessary data as parameters and returns a Stream with effect type Task. On the other hand, the standard Stream requires a closure to be initialized


It requires a by-name parameter, the by-name returns a different result upon each invocation and the body of the by-name depends on the closure within which the function is called. This line of code is impossible to understand by itself; taken out of context, it is meaningless. In other words the function lacks referential transparency.

Function Duties should be Declared

Lines from a file in fs2 are produced with

scala> io.file.readAll[Task](Paths.get("testdata/fahrenheit.txt"), 4096).
     |       through(text.utf8Decode).
     |       through(text.lines)
res3: fs2.Stream[fs2.Task,String] = evalScope(Scope(Free)).flatMap(<function1>)

and standard Stream we have

scala> val path = Paths.get("testdata/fahrenheit.txt")
path: java.nio.file.Path = testdata\fahrenheit.txt

scala> val reader = Files.newBufferedReader(path,
 | java.nio.charset.StandardCharsets.UTF_8)
reader: java.io.BufferedReader = java.io.BufferedReader@3aeed31e

scala> Stream.continually{reader.readLine}
res4: scala.collection.immutable.Stream[String] = Stream(120, ?)

There are two important differences here. The first is evaluation; even though standard streams are considered lazy, they evaluate the head value eagerly. We can see fs2 gives us a computation where standard Streams gives us a value. The second difference is the type.

In fs2 we have a type of Stream[Task, String]; standard gives us Stream[String]. The fs2 Stream explicitly expresses the intention for effectful computation, whereas the standard Stream hides this implementation detail. Another way of looking at this is, standard Streams hide their effects where fs2 Streams surface their effects. In fact, fs2 Streams (if effectful) only allow the developer to find its result through the effect type. This gives the developer a sort of heads up about what's going on in the application behind the scenes.

What the Effect Type Represents

The effect type in any such functional library represents the intent to perform an operation outside the scope of the return type. This is very common for IO (as we've seen) and other effectful operations like Logging or showing the user a pop up. The computation usually produces some sort of a result but, before returning the result writes it to disk, logs it or tells the user about a completion state. In FP, we like to express all data in a function through the function definition and effects are just weird data.